Discrete Riemann-Hilbert problem and interpolation of entire functions
نویسندگان
چکیده
منابع مشابه
0 Riemann – Hilbert Problem and the Discrete Bessel Kernel
We use discrete analogs of Riemann–Hilbert problem’s methods to derive the discrete Bessel kernel which describes the poissonized Plancherel measures for symmetric groups. To do this we define discrete analogs of a Riemann–Hilbert problem and of an integrable integral operator and show that computing the resolvent of a discrete integrable operator can be reduced to solving a corresponding discr...
متن کاملCertain Hilbert Spaces of Entire Functions
1. Introduction. The research reported on in the present note was motivated by the following Proposition (F), due to Ernest Fischer ([5], see also [4] for an earlier version; actually Fischer proved a more general result, but the special case suffices as a point of departure for our discussion) : (F) Let P denote a homogeneous polynomial in si, • • • , z k with complex coefficients. Then every ...
متن کاملInterpolation and Approximation by Entire Functions
In this note we study the connection between best approximation and interpolation by entire functions on the real line. A general representation for entire interpolants is outlined. As an illustration, best upper and lower approximations from the class of functions of fixed exponential type to the Gaussian are constructed. §1. Approximation Background The Fourier transform of φ ∈ L(R) is define...
متن کاملCurves , Riemann - Hilbert Problem and Schlesinger Equations
We are solving the classical Riemann-Hilbert problem of rank N > 1 on the extended complex plane punctured in 2m + 2 points, for N × N quasi-permutation monodromy matrices. Our approach is based on the finite gap integration method applied to study the Riemann-Hilbert by Kitaev and Korotkin [1], Deift, Its, Kapaev and Zhou [2] and Korotkin, [3]. This permits us to solve the Riemann-Hilbert prob...
متن کاملNonlinear Riemann-hilbert Problem for Bordered Riemann Surfaces
Let Σ be a bordered Riemann surface with genus g and m boundary components. Let {γz}z∈∂Σ be a smooth family of smooth Jordan curves in C which all contain the point 0 in their interior. Then there exists a holomorphic function f(z) on Σ smooth up to the boundary with at most 2g +m− 1 zeros on Σ such that f(z) ∈ γz for every z ∈ ∂Σ.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ???????? ?????????????? ??????
سال: 2021
ISSN: ['2074-1863', '2074-1871']
DOI: https://doi.org/10.13108/2021-13-2-70